Find a vector function, r(t), that represents the curve of intersection of the two surfaces. the cylinder x2 y2 = 9 and the surface z = xy

Respuesta :

Let [tex]x = 3\cos(t)[/tex] and [tex]y=3\sin(t)[/tex]. Then

[tex]z = xy = 9\cos(t)\sin(t) = \dfrac92 \sin(2t)[/tex]

So we can parameterize the intersection by

[tex]\vec r(t) = 3\cos(t)\,\vec\imath + 3\sin(t)\,\vec\jmath + \dfrac92 \sin(2t)\,\vec k[/tex]

with [tex]0\le t\le2\pi[/tex].

Ver imagen LammettHash