So,some please help me with this question !

=============================================================
Explanation:
Angles EBA and DBC are congruent because of the similar arc marking. Both are x each.
Those angles, along with EBD, combine to form a straight angle of 180 degrees. We consider those angles to be supplementary.
So,
(angleEBA) + (angleEBD) + (angleDBC) = 180
( x ) + (4x+12) + (x) = 180
(x+4x+x) + 12 = 180
6x+12 = 180
6x = 180-12
6x = 168
x = 168/6
x = 28
Angles EBA and DBC are 28 degrees each.
This means angle D = 3x+5 = 3*28+5 = 89
-----------
Then we have one last set of steps to finish things off.
Focus entirely on triangle DBC. The three interior angles add to 180. This is true of any triangle.
D+B+C = 180
89 + 28 + C = 180
117+C = 180
C = 180 - 117
C = 63 degrees
[tex] \qquad \qquad \bf \huge\star \: \: \large{ \underline{Answer} } \huge \: \: \star[/tex]
[tex]\qquad❖ \: \sf \: \angle C = 63 \degree[/tex]
[tex]\textsf{ \underline{\underline{Steps to solve the problem} }:}[/tex]
[tex]\qquad❖ \: \sf \:x + 4x + 12 + x=180°[/tex]
( Angle EBA= Angle DBC, and the three angles sum upto 180° due to linear pair property )
[tex]\qquad❖ \: \sf \:6x + 12 = 180[/tex]
[tex]\qquad❖ \: \sf \:6x = 180 - 12[/tex]
[tex]\qquad❖ \: \sf \:6x = 168[/tex]
[tex]\qquad❖ \: \sf \:x = 28 \degree[/tex]
Next,
[tex]\qquad❖ \: \sf \: \angle C + \angle D + x = 180°[/tex]
[tex]\qquad❖ \: \sf \: \angle C +3x + 5 + x = 180°[/tex]
[tex]\qquad❖ \: \sf \: \angle C +4x = 180 - 5[/tex]
[tex]\qquad❖ \: \sf \: \angle C +4(28) = 175[/tex]
( x = 28° )
[tex]\qquad❖ \: \sf \: \angle C +112 = 175[/tex]
[tex]\qquad❖ \: \sf \: \angle C = 175 - 112[/tex]
[tex]\qquad❖ \: \sf \: \angle C = 63 \degree[/tex]
[tex] \qquad \large \sf {Conclusion} : [/tex]
[tex]\qquad❖ \: \sf \: \angle C = 63 \degree[/tex]