Respuesta :
This is an exercise in the general or combined gas law.
To start solving this exercise, we obtain the following data:
Data:
- T₁ = 22.5 °C + 273 = 295.5 K
- P₁ = 1.95 atm
- V₁ = ¿?
- P₂ = 3.69 atm
- T₂ = 11.9 °C + 273 = 284.9 k
- V₂= 56.4 ml
We use the following formula:
P₁V₁T₂ = P₂V₂T₁ ⇒ General formula
Where
- P₁ = Initial pressure
- V₁ = Initial volume
- T₂ = Initial temperature
- P₂ = Final pressure
- V₂ = final volume
- T₁ = Initial temperature
We clear the formula for the initial volume:
[tex]\boldsymbol{\sf{V_{1}=\dfrac{P_{2}V_{2}T_{1}}{P_{1}T_{2}} } }[/tex]
We substitute our data into the formula to solve:
[tex]\boldsymbol{\sf{V_{1}=\dfrac{(3.69 \not{atm})(56.4 \ ml)(295.5 \not{k})}{(1.95 \not{atm})(284.9\not{k})} }}[/tex]
[tex]\boldsymbol{\sf{V_{1}=\dfrac{61498.278}{555.555} \ lm }}[/tex]
[tex]\boxed{\boldsymbol{\sf{V_{1}=110.697 \ lm }}}[/tex]
The helium-filled balloon has a volume of 110.697 ml.
Answer:
110.69 ml
Explanation:
Not sure why my answer was removed:
Use the general rule for gases:
P1 V1 / T1 = P2 V2 / T2 Looking for V1 T must be in Kelvin
re-arrange to :
V1 = P2 V 2 * T1 / (T2 * P1) <==== now sub in the values
V1 = 3.69 * 56.4 * (22.5 + 273.15) / [(11.9 + 273.15) * 1.95]
V1 = 110.69 ml