Find the radius of convergence, then determine the interval of convergence

By the ratio test, the series converges for
[tex]\displaystyle \lim_{k\to\infty} \left|\frac{(x+2)^{k+1}}{\sqrt{k+1}} \cdots \frac{\sqrt k}{(x+2)^k}\right| = |x+2| \lim_{k\to\infty} \sqrt{\frac k{k+1}} = |x+2| < 1[/tex]
so that the radius of convergence is 1, and the interval of convergence is
|x + 2| < 1 ⇒ -1 < x + 2 < 1 ⇒ -3 < x < -1
The radius of convergence R is 1 and the interval of convergence is (-3, -1) for the given power series. This can be obtained by using ratio test.
Ratio test is the test that is used to find the convergence of the given power series.
First aₙ is noted and then aₙ₊₁ is noted.
For ∑ aₙ, aₙ and aₙ₊₁ is noted.
[tex]\lim_{n \to \infty} |\frac{a_{n+1}}{a_{n} }|[/tex] = β
Here [tex]a_{k}[/tex] = [tex]\frac{(x+2)^{k}}{\sqrt{k} }[/tex] and [tex]a_{k+1}[/tex] = [tex]\frac{(x+2)^{k+1}}{\sqrt{k+1} }[/tex]
Now limit is taken,
[tex]\lim_{n \to \infty} |\frac{a_{n+1}}{a_{n} }|[/tex] = [tex]\lim_{n \to \infty} |\frac{(x+2)^{k+1} }{\sqrt{k+1} }/\frac{(x+2)^{k} }{\sqrt{k} }|[/tex]
= [tex]\lim_{n \to \infty} |\frac{(x+2)^{k+1} }{\sqrt{k+1} }\frac{\sqrt{k} }{(x+2)^{k}}|[/tex]
= [tex]\lim_{n \to \infty} |{(x+2) } }{\sqrt{\frac{k}{k+1} } }}|[/tex]
= [tex]|{x+2 }|\lim_{n \to \infty}}{\sqrt{\frac{k}{k+1} } }}[/tex]
= [tex]|{x+2 }|[/tex] < 1
- 1 < [tex]{x+2 }[/tex] < 1
- 1 - 2 < x < 1 - 2
- 3 < x < - 1
We get that,
interval of convergence = (-3, -1)
radius of convergence R = 1
Hence the radius of convergence R is 1 and the interval of convergence is (-3, -1) for the given power series.
Learn more about radius of convergence here:
brainly.com/question/14394994
#SPJ1