Answer:
[tex]V = 900\; {\rm V}[/tex] for a resistor where [tex]I = 30\; {\rm A}[/tex] and [tex]R = 30\; {\rm \Omega}[/tex].
Explanation:
By Ohm's Law, if the electric resistance of a resistor is [tex]R[/tex] and the current going through that resistor is [tex]I[/tex], the voltage across that resistor would be [tex]V = I\, R[/tex].
Note that electric resistance is typically measured in Ohms, where [tex]1\; {\rm \Omega} = 1\; {\rm V \cdot A^{-1}}[/tex].
Given that [tex]I = 30\; {\rm A}[/tex] and [tex]R = 30\; {\rm \Omega}[/tex] for the resistor in this question, apply the formula [tex]V = I\, R[/tex] to find the voltage [tex]V[/tex] across this resistor:
[tex]\begin{aligned} V &= I\, R \\ &= 30\; {\rm A} \times 30\; {\rm \Omega} \\ &= 30\; {\rm A} \times 30\; {\rm V \cdot A^{-1}} \\ &= 900\; {\rm V} \end{aligned}[/tex].