The number of photons given off will be 50 photons.
To find the answer, we need to know about the plank's equation.
[tex]E=-13.6(\frac{1}{(n_f)^2}- \frac{1}{(n_i)^2})eV\\[/tex]
[tex]n_f=4\\n_i=2\\N=50[/tex]
[tex]E=-13.6(\frac{1}{(4)^2}- \frac{1}{(2)^2})eV\\\\E=-13.6*-0.188=2.55eV[/tex]
[tex]E=50*2.55eV=127.5eV[/tex]
E=nhf
[tex]n=\frac{E}{h*f} =\frac{127.5*1.67*10^{-19}J}{(6.63*10^-34)Js} \\[/tex]
[tex]\frac{1}{wave length}=R_H(\frac{1}{(n_i)^2}- \frac{1}{(n_f)^2})\\\\1/wv= 1.1*10^5(\frac{1}{(2)^2}- \frac{1}{(4)^2})=20625cm^{-1}.\\wavelength=486nm.[/tex]
[tex]f=\frac{c}{wavelength} =\frac{3*10^8}{486*10^{-9}} =6.172*10^{14}s{-1}[/tex]
[tex]n=\frac{E}{h*f} =\frac{127.5*1.67*10^{-19}J}{(6.63*10^-34)Js*6.17*10^{14} s^{-1}} \\\\n=52.05 photons[/tex]
Thus, we can conclude that, the number of photons given off will be 50 photons.
Learn more about the photons here:
https://brainly.com/question/15946945
#SPJ1