Given: NQ is the bisector of ZMNP and ZNMQ
ZNPQ
Prove: Δ MNQ =ΔΡΝΟ
M
N
Q
P

1) [tex]\overline{NQ}[/tex] is the bisector of [tex]\angle MNP[/tex] and [tex]\angle NMQ \cong \angle NPQ[/tex] (given)
2) [tex]\angle MNQ \cong \angle QNP[/tex] (a bisector splits an angle into two congruent angles)
3) [tex]\overline{NQ} \cong \overline{NQ}[/tex] (reflexive property)
4) [tex]\triangle MNQ \cong \triangle PNQ[/tex] (AAS)