Respuesta :
[tex]\quad \huge \quad \quad \boxed{ \tt \:Answer }[/tex]
[tex]\qquad \tt \rightarrow \: equation \: : \:y = 3x - 10[/tex]
____________________________________
[tex] \large \tt Solution \: : [/tex]
Slope of parallel lines are equal.
[tex] \texttt{Step 1 - Find slope of line -6x + 2y = 4} [/tex]
[tex]\qquad \tt \rightarrow \: - 6x + 2y = 4[/tex]
[tex]\qquad \tt \rightarrow \: 2( - 3 x+ y) = 2(2)[/tex]
[tex]\qquad \tt \rightarrow \: - 3x + y = 2[/tex]
[tex]\qquad \tt \rightarrow \: y = 3x + 2[/tex]
comparison with y = mx + c, m = slope = 3
[tex] \textsf{Step 2 - Use slope and points to find equation} [/tex]
[tex]\qquad \tt \rightarrow \: y - ( - 4) = 3(x - 2)[/tex]
[tex]\qquad \tt \rightarrow \: y + 4 = 3x - 6[/tex]
[tex]\qquad \tt \rightarrow \: y = 3x - 6 - 4[/tex]
[tex]\qquad \tt \rightarrow \: y = 3x - 10[/tex]
Answered by : ❝ AǫᴜᴀWɪᴢ ❞
-------------------------------------------------------------------------------------------------------------
Answer: [tex]\textsf{y = 3x - 10}[/tex]
-------------------------------------------------------------------------------------------------------------
Given: [tex]\textsf{Goes through (2, -4) and parallel to -6x + 2y = 4}[/tex]
Find: [tex]\textsf{The equation that follows the criteria provided}[/tex]
Solution: First we need to solve for y in the equation that was provided so we can get the slope. Then we plug in the values into the point-slope formula and then solve for y to get our final equation.
Add 6x to both sides
- [tex]\textsf{-6x + 6x + 2y = 4 + 6x}[/tex]
- [tex]\textsf{2y = 4 + 6x}[/tex]
Divide both sides by 2
- [tex]\textsf{2y/2 = (4 + 6x)/2}[/tex]
- [tex]\textsf{y = (4 + 6x)/2}[/tex]
- [tex]\textsf{y = (4/2) + (6x/2)}[/tex]
- [tex]\textsf{y = 2 + 3x}[/tex]
Plug in the values
- [tex]\textsf{y - y}_1\textsf{ = m(x - x}_1\textsf{)}[/tex]
- [tex]\textsf{y - (-4) = 3(x - 2)}[/tex]
Distribute and simplify
- [tex]\textsf{y + 4 = (3 * x) + (3 * -2)}[/tex]
- [tex]\textsf{y + 4 = 3x - 6}[/tex]
Subtract 4 from both sides
- [tex]\textsf{y + 4 - 4 = 3x - 6 - 4}[/tex]
- [tex]\textsf{y = 3x - 6 - 4}[/tex]
- [tex]\textsf{y = 3x - 10}[/tex]
Therefore, the equation that follows the information that was provided in the problem statement is y = 3x - 10.