Respuesta :

[tex]\quad \huge \quad \quad \boxed{ \tt \:Answer }[/tex]

[tex]\qquad \tt \rightarrow \: equation \: : \:y = 3x - 10[/tex]

____________________________________

[tex] \large \tt Solution \: : [/tex]

Slope of parallel lines are equal.

[tex] \texttt{Step 1 - Find slope of line -6x + 2y = 4} [/tex]

[tex]\qquad \tt \rightarrow \: - 6x + 2y = 4[/tex]

[tex]\qquad \tt \rightarrow \: 2( - 3 x+ y) = 2(2)[/tex]

[tex]\qquad \tt \rightarrow \: - 3x + y = 2[/tex]

[tex]\qquad \tt \rightarrow \: y = 3x + 2[/tex]

comparison with y = mx + c, m = slope = 3

[tex] \textsf{Step 2 - Use slope and points to find equation} [/tex]

[tex]\qquad \tt \rightarrow \: y - ( - 4) = 3(x - 2)[/tex]

[tex]\qquad \tt \rightarrow \: y + 4 = 3x - 6[/tex]

[tex]\qquad \tt \rightarrow \: y = 3x - 6 - 4[/tex]

[tex]\qquad \tt \rightarrow \: y = 3x - 10[/tex]

Answered by : ❝ AǫᴜᴀWɪᴢ ❞

-------------------------------------------------------------------------------------------------------------

Answer:  [tex]\textsf{y = 3x - 10}[/tex]

-------------------------------------------------------------------------------------------------------------

Given:  [tex]\textsf{Goes through (2, -4) and parallel to -6x + 2y = 4}[/tex]

Find: [tex]\textsf{The equation that follows the criteria provided}[/tex]

Solution:  First we need to solve for y in the equation that was provided so we can get the slope.  Then we plug in the values into the point-slope formula and then solve for y to get our final equation.

Add 6x to both sides

  • [tex]\textsf{-6x + 6x + 2y = 4 + 6x}[/tex]
  • [tex]\textsf{2y = 4 + 6x}[/tex]

Divide both sides by 2

  • [tex]\textsf{2y/2 = (4 + 6x)/2}[/tex]
  • [tex]\textsf{y = (4 + 6x)/2}[/tex]
  • [tex]\textsf{y = (4/2) + (6x/2)}[/tex]
  • [tex]\textsf{y = 2 + 3x}[/tex]

Plug in the values

  • [tex]\textsf{y - y}_1\textsf{ = m(x - x}_1\textsf{)}[/tex]
  • [tex]\textsf{y - (-4) = 3(x - 2)}[/tex]

Distribute and simplify

  • [tex]\textsf{y + 4 = (3 * x) + (3 * -2)}[/tex]
  • [tex]\textsf{y + 4 = 3x - 6}[/tex]

Subtract 4 from both sides

  • [tex]\textsf{y + 4 - 4 = 3x - 6 - 4}[/tex]
  • [tex]\textsf{y = 3x - 6 - 4}[/tex]
  • [tex]\textsf{y = 3x - 10}[/tex]

Therefore, the equation that follows the information that was provided in the problem statement is y = 3x - 10.