Respuesta :

[tex]\quad \huge \quad \quad \boxed{ \tt \:Answer }[/tex]

  • [tex]\qquad \tt \rightarrow \: x= 13 \degree[/tex]
  • [tex]\qquad \tt \rightarrow \: y= 11 \degree[/tex]

____________________________________

[tex] \large \tt Solution \: : [/tex]

[tex]\qquad \tt \rightarrow \:( 3y + 5 + 52) + 90 = 180[/tex]

[ Co - interior angles ]

[tex]\qquad \tt \rightarrow \: 3y + 57 + 90 = 180[/tex]

[tex]\qquad \tt \rightarrow \: 3y + 147 = 180[/tex]

[tex]\qquad \tt \rightarrow \: 3y = 180 - 147[/tex]

[tex]\qquad \tt \rightarrow \: 3y = 33[/tex]

[tex]\qquad \tt \rightarrow \: y = \cfrac{33}{3} [/tex]

[tex]\qquad \tt \rightarrow \: y = 11 \degree[/tex]

[tex] \large \tt \: For \: \: x : [/tex]

[tex]\qquad \tt \rightarrow \: 4x= 52[/tex]

[ Alternate interior angles ]

[tex]\qquad \tt \rightarrow \: x= \cfrac{ 52}{4}[/tex]

[tex]\qquad \tt \rightarrow \: x= { 13}{} \degree[/tex]

Answered by : ❝ AǫᴜᴀWɪᴢ ❞