The complete equation of the ellipse is [tex]\frac{(x + 5)^2}{5^2} + \frac{(y - 6)^2}{8^2} = 1[/tex]
The complete question is in the attachment
The given parameters are:
The vertex is represented as (h, k ± a).
So, we have:
h = -5
k + a = 14
k - a = -2
Add the last two equations
2k = 12
Divide by 2
k = 6
Substitute k = 6 in k + a = 14
6 + a = 14
Solve for a
a = 8
The ellipse equation is represented as:
[tex]\frac{(x - h)^2}{b^2} + \frac{(y - k)^2}{a^2} = 1[/tex]
So, we have:
[tex]\frac{(x + 5)^2}{b^2} + \frac{(y - 6)^2}{8^2} = 1[/tex]
The ellipse passes through the point (0,6).
So, we have:
[tex]\frac{(0 + 5)^2}{b^2} + \frac{(6 - 6)^2}{8^2} = 1[/tex]
This gives
[tex]\frac{5^2}{b^2} + \frac{0}{8^2} = 1[/tex]
Evaluate the quotient
[tex]\frac{5^2}{b^2} = 1[/tex]
Cross multiply
[tex]b^2 = 5^2[/tex]
Take the square root of both sides
b = 5
Substitute b = 5 in [tex]\frac{(x + 5)^2}{b^2} + \frac{(y - 6)^2}{8^2} = 1[/tex]
[tex]\frac{(x + 5)^2}{5^2} + \frac{(y - 6)^2}{8^2} = 1[/tex]
Hence, the complete equation of the ellipse is [tex]\frac{(x + 5)^2}{5^2} + \frac{(y - 6)^2}{8^2} = 1[/tex]
Read more about ellipse at:
https://brainly.com/question/2284093
#SPJ1