The solution to the exponential expression is as follows:
- [tex]\mathbf{\dfrac{(2\times 3^{-2})^3(5\times 3^2)^2}{(3^{-2})(5\times 2)^2} = 2}[/tex]
- [tex]\mathbf{=(3^3)(4^0)^2(3\times 2)^{-3}(2^2)=\dfrac{1}{2}}[/tex]
- [tex]\mathbf{\dfrac{(3^7\times 4^7)(2 \times 5)^{-3}(5^2)}{12^7\times 5^{-1}\times 2^{-4}} = 2}[/tex]
- [tex]\mathbf{\dfrac{(2\times 3)^{-1}\times 2^0}{(2\times 3)^{-1}}= 1}[/tex]
What are exponential expressions?
Exponential expressions are convenient ways to express the mathematical power of a number in short forms.
Simplifying the following expressions given:
1.
[tex]\mathbf{\dfrac{(2\times 3^{-2})^3(5\times 3^2)^2}{(3^{-2})(5\times 2)^2} }[/tex]
Applying the exponent rule: [tex]\mathbf{(a\times b)^n = a^n b^n}[/tex]
[tex]\mathbf{\implies \dfrac{(2\times 3^{-2})^3\times 5^2\times 81}{3^{-2}\times 5^2\times2^2} }[/tex]
cancel out the common factor, we have:
[tex]\mathbf{\implies \dfrac{(2\times 3^{-2})^3\times 81}{3^{-2}\times2^2} }[/tex]
[tex]\mathbf{\implies \dfrac{(2\times 3^{-2})^3\times 3^4}{3^{-2}\times2^2} }[/tex]
[tex]\mathbf{\implies \dfrac{(2\times 3^{-2})^3\times 3^6}{2^2} }[/tex]
[tex]\mathbf{\implies \dfrac{2^3 \times \dfrac{1}{729} \times 3^6}{2^2} }[/tex]
[tex]\mathbf{\implies \dfrac{2^3 \times \dfrac{1}{729} \times729}{2^2} }[/tex]
[tex]\mathbf{\implies \dfrac{2^3 }{2^2} = 2}[/tex]
2.
[tex]\mathbf{=(3^3)(4^0)^2(3\times 2)^{-3}(2^2)}[/tex]
= [tex]\mathbf{\dfrac{1}{2}}[/tex]
3.
[tex]\mathbf{\dfrac{(3^7\times 4^7)(2 \times 5)^{-3}(5^2)}{12^7\times 5^{-1}\times 2^{-4}} = 2}[/tex]
4.
[tex]\mathbf{\dfrac{(2\times 3)^{-1}\times 2^0}{(2\times 3)^{-1}}= 1}[/tex]
Learn more about the exponential expressions here:
https://brainly.com/question/12940982
#SPJ1