Answer:
20.4 years (nearest tenth)
Step-by-step explanation:
Compound Interest Formula
[tex]\large \text{$ \sf A=P\left(1+\frac{r}{n}\right)^{nt} $}[/tex]
where:
Given:
Substitute the given values into the formula and solve for t:
[tex]\implies \sf 15000=6000\left(1+\frac{0.045}{12}\right)^{12t}[/tex]
[tex]\implies \sf \dfrac{15000}{6000}=\left(1.00375\right)^{12t}[/tex]
[tex]\implies \sf 2.5=\left(1.00375\right)^{12t}[/tex]
[tex]\implies \sf \ln (2.5)=\ln \left(1.00375\right)^{12t}[/tex]
[tex]\implies \sf \ln (2.5)=12t \ln \left(1.00375\right)[/tex]
[tex]\implies \sf t=\dfrac{\ln (2.5)}{12 \ln (1.00375)}[/tex]
[tex]\implies \sf t=20.40017123[/tex]
Therefore, it would take 20.4 years (nearest tenth) for the investment to reach $15,000.