Tulpe
contestada

If [tex]\rm \: x = log_{a}(bc)[/tex], [tex]\rm \: y = log_{b}(ca)[/tex], [tex]\rm \: z = log_{c}(ab)[/tex] , the xyz is equal to :
(a) x + y + z
(b) x + y + z + 1
(c) x + y + z + 2
(d) x + y + z + 3​

If texrm x logabctex texrm y logbcatex texrm z logcabtex the xyz is equal to a x y zb x y z 1c x y z 2d x y z 3 class=

Respuesta :

Use the change-of-basis identity,

[tex]\log_x(y) = \dfrac{\ln(y)}{\ln(x)}[/tex]

to write

[tex]xyz = \log_a(bc) \log_b(ac) \log_c(ab) = \dfrac{\ln(bc) \ln(ac) \ln(ab)}{\ln(a) \ln(b) \ln(c)}[/tex]

Use the product-to-sum identity,

[tex]\log_x(yz) = \log_x(y) + \log_x(z)[/tex]

to write

[tex]xyz = \dfrac{(\ln(b) + \ln(c)) (\ln(a) + \ln(c)) (\ln(a) + \ln(b))}{\ln(a) \ln(b) \ln(c)}[/tex]

Redistribute the factors on the left side as

[tex]xyz = \dfrac{\ln(b) + \ln(c)}{\ln(b)} \times \dfrac{\ln(a) + \ln(c)}{\ln(c)} \times \dfrac{\ln(a) + \ln(b)}{\ln(a)}[/tex]

and simplify to

[tex]xyz = \left(1 + \dfrac{\ln(c)}{\ln(b)}\right) \left(1 + \dfrac{\ln(a)}{\ln(c)}\right) \left(1 + \dfrac{\ln(b)}{\ln(a)}\right)[/tex]

Now expand the right side:

[tex]xyz = 1 + \dfrac{\ln(c)}{\ln(b)} + \dfrac{\ln(a)}{\ln(c)} + \dfrac{\ln(b)}{\ln(a)} \\\\ ~~~~~~~~~~~~+ \dfrac{\ln(c)\ln(a)}{\ln(b)\ln(c)} + \dfrac{\ln(c)\ln(b)}{\ln(b)\ln(a)} + \dfrac{\ln(a)\ln(b)}{\ln(c)\ln(a)} \\\\ ~~~~~~~~~~~~ + \dfrac{\ln(c)\ln(a)\ln(b)}{\ln(b)\ln(c)\ln(a)}[/tex]

Simplify and rewrite using the logarithm properties mentioned earlier.

[tex]xyz = 1 + \dfrac{\ln(c)}{\ln(b)} + \dfrac{\ln(a)}{\ln(c)} + \dfrac{\ln(b)}{\ln(a)} + \dfrac{\ln(a)}{\ln(b)} + \dfrac{\ln(c)}{\ln(a)} + \dfrac{\ln(b)}{\ln(c)} + 1[/tex]

[tex]xyz = 2 + \dfrac{\ln(c)+\ln(a)}{\ln(b)} + \dfrac{\ln(a)+\ln(b)}{\ln(c)} + \dfrac{\ln(b)+\ln(c)}{\ln(a)}[/tex]

[tex]xyz = 2 + \dfrac{\ln(ac)}{\ln(b)} + \dfrac{\ln(ab)}{\ln(c)} + \dfrac{\ln(bc)}{\ln(a)}[/tex]

[tex]xyz = 2 + \log_b(ac) + \log_c(ab) + \log_a(bc)[/tex]

[tex]\implies \boxed{xyz = x + y + z + 2}[/tex]

(C)