Respuesta :

-------------------------------------------------------------------------------------------------------------

Answer:  [tex]\textsf{y = -2/5x}[/tex]

-------------------------------------------------------------------------------------------------------------

Given:  [tex]\textsf{Passes through (5, -2) and slope of -2/5}[/tex]

Find:  [tex]\textsf{The equation that follows the details provided}[/tex]

Solution: We first need to plug into the point-slope form and after simplifying, distributing, and solving for y we will complete our equation.

Plug in the values

  • [tex]\textsf{y - y}_1\textsf{ = m(x - x}_1\textsf{)}[/tex]
  • [tex]\textsf{y - (-2) = -2/5(x - 5)}[/tex]

Distribute and simplify

  • [tex]\textsf{y + 2 = -2/5(x - 5)}[/tex]
  • [tex]\textsf{y + 2 = (-2/5 * x) + (-2/5 * (-5))}[/tex]
  • [tex]\textsf{y + 2 = -2/5x + 2}[/tex]

Subtract 2 from both sides

  • [tex]\textsf{y + 2 - 2 = -2/5x + 2 - 2}[/tex]
  • [tex]\textsf{y = -2/5x + 2 - 2}[/tex]
  • [tex]\textsf{y = -2/5x}[/tex]

Therefore, the final equation that follows the information that was provided is y = -2/5x.