Respuesta :

[tex]1) \text{ } 2^{1/2}=\sqrt{2}\\\\2) \text{ } 2^{2/3}=\sqrt[3]{2^{2}}\\\\3) \text{ } 3^{3/2}=\sqrt{3^{3}}\\\\4) \text{ } 3^{1/3}=\sqrt[3]{3}[/tex]

Answer: correct radical forms are:

[tex]2^\frac{1}{2} = \sqrt{2}[/tex]

[tex]2^\frac{2}{3} = \sqrt[3]{2}[/tex]

[tex]3^\frac{3}{2} = \sqrt[]{3^3}[/tex]

[tex]3^\frac{1}{3} = \sqrt[3]{3}[/tex]

Step-by-step explanation:

Radical form : If n is a positive integer that is greater than 1 and a is a real number then, [tex]\sqrt[n]{a} =a^\frac{1}{n}[/tex] where n is called the index, a is called the radicand, and the symbol √ is called the radical.

therefore,  

radical form of given values are :

[tex]2^\frac{1}{2} = \sqrt{2}[/tex]

[tex]2^\frac{2}{3} = \sqrt[3]{2}[/tex]

[tex]3^\frac{3}{2} = \sqrt[]{3^3}[/tex]

[tex]3^\frac{1}{3} = \sqrt[3]{3}[/tex]

learn more about radical forms at

https://brainly.com/question/18864104

#SPJ10