Respuesta :

Esther

Answer:

b) f(x) = x² - 256

Step-by-step explanation:

Since we have been given the zeros of a function, -16 and 16. We are asked to find which function truly has those zeros.

To find this, we can substitute the zeros for x in the functions to find the one that is true/correct.

A) f(x) = x² - 16

 ⇒  0 = 16² - 16          and          ⇒  0 = (-16)² - 16

 ⇒  0 = 256 - 16        and          ⇒  0 = 256 - 16

 ⇒  0 = 240 ✘          and          ⇒  0 = 240 ✘

B) f(x) = x² - 256

 ⇒  0 = 16² - 256          and          ⇒  0 = (-16)² - 256

 ⇒  0 = 256 - 256        and          ⇒  0 = 256 - 256

 ⇒  0 = 0 ✔                  and          ⇒  0 = 0 ✔

C) f(x) = x² - 32x + 256

 ⇒  0 = 16² - 32(16) + 256         and        ⇒  0 = (-16)² - 32(-16) + 256

 ⇒  0 = 256 - 512 + 256           and        ⇒  0 = 256 + 512 + 256

 ⇒  0 = 512 - 512                       and        ⇒  0 = 512 + 512

 ⇒  0 = 0 ✔                               and        ⇒  0 = 1,024 ✘

D) f(x) = x² + 32x + 256

  ⇒  0 = 16² + 32(16) + 256         and        ⇒  0 = (-16)² + 32(-16) + 256

  ⇒  0 = 256 + 512 + 256           and         ⇒  0 = 256 - 512 + 256

  ⇒  0 = 512 + 512                       and         ⇒  0 = 512 - 512

  ⇒  0 = 1,024 ✘                          and        ⇒  0 = 0 ✔

Therefore, Function B has the zeros of x = -16 and x = 16.

Learn more about finding the zeros of a function here:

brainly.com/question/18033939

brainly.com/question/27638369