contestada

Describe the transformation of the function f(x)=2|x+3| from its parent function. WHOEVER HELPS ME I WILL MARK BRAINLEST :)

Respuesta :

Parent function is general modulus function

  • y=|x|

Now

x is increased by +3 so change in x axis and vertex.

The vertex shifted 3 units leftwards .

  • And it's multiplied with 2

Means compression factor is 2

Both graphs attached

Ver imagen Аноним

Answer:

  • Translated 3 units left
  • Stretched parallel to the y-axis (vertically) by a scale factor of 2

Step-by-step explanation:

Translations

For [tex]a > 0[/tex]

[tex]f(x+a) \implies f(x) \: \textsf{translated}\:a\:\textsf{units left}[/tex]

[tex]y=a\:f(x) \implies f(x) \: \textsf{stretched parallel to the y-axis by a factor of}\:a[/tex]

Parent function:  [tex]f(x) = |x|[/tex]

Translated 3 units left:  [tex]f(x+3)=|x+3|[/tex]

Stretched parallel to the y-axis by a factor of 2:  [tex]2f(x+3)=2|x+3|[/tex]

Therefore, the function has been:

  • Translated 3 units left
  • Stretched parallel to the y-axis (vertically) by a scale factor of 2

Attachments

Green graph - parent function   [tex]f(x) = |x|[/tex]

Red graph - Translated 3 units left   [tex]f(x)=|x+3|[/tex]

Blue graph - Stretched   [tex]f(x)=2|x+3|[/tex]

Ver imagen semsee45
Ver imagen semsee45
Ver imagen semsee45