Respuesta :

[tex]\text{Given that,}~ (x_1 ,y_1) = (0,-4)~ \text{and}~ (x_2 ,y _2) = (30,-9)\\\\\text{Slope,}~ m = \dfrac{y_2-y_1}{x_2 -x_1}\\\\\\~~~~~~~~~~~~~=\dfrac{-9-(-4)}{30-0}\\\\\\~~~~~~~~~~~~~=\dfrac{-9+4}{30}\\\\\\~~~~~~~~~~~~~=\dfrac{-5}{30}\\\\\\~~~~~~~~~~~~~=-\dfrac 16[/tex]

Answer:

m = -(1/6)

Step-by-step explanation:

Given:

Two points;(0, -4) and (30, -9)

To Find:

The Slope of the line

Sol^n:

Use slope's formulae:

[tex] \rm \: m = \cfrac{ y_{2} - y_{1}}{x_{2} - x_{1}} [/tex]

ATQ,

y2 = -9

y1 = -4

x2 = 30

x1 = 0

So substitute them:

[tex] \rm \: m = \cfrac{ - 9 - ( - 4)}{30 - 0} [/tex]

[tex] \rm \: m = \cfrac{ - 9 + 4}{30} [/tex]

[tex] \rm \: m = \cfrac{ - 5}{30} [/tex]

[tex] \boxed{ \rm \: m = - \cfrac{1}{6} }[/tex]

Thus,slope is -(1/6) .