Respuesta :

Answer:

g(x) = 5|(x - 2) - 2| - 2

Step-by-step explanation:

To shift 5 units right :

⇒ f(x) = 5|(x - 2) - 2| - 7

Applied rule : a units right → f(x) = (x - a)

To shift 5 units up :

⇒ g(x) = 5|(x - 2) - 2| - 7 + 5

g(x) = 5|(x - 2) - 2| - 2

Answer:

[tex]g(x)=5|x-4|-2[/tex]

Step-by-step explanation:

Translations

For [tex]a > 0[/tex]

[tex]f(x-a) \implies f(x) \: \textsf{translated}\:a\:\textsf{units right}[/tex]

[tex]f(x)+a \implies f(x) \: \textsf{translated}\:a\:\textsf{units up}[/tex]

Parent function:

[tex]f(x)=5|x-2|-7[/tex]

Translate 2 units right:

[tex]\begin{aligned}\implies f(x-2)& =5|x-2-2|-7\\ & =5|x-4|-7 \end{aligned}[/tex]

Then translate 5 units up:

[tex]\begin{aligned}\implies f(x-2)+5& =5|x-4|-7+5\\ & =5|x-4|-2 \end{aligned}[/tex]

Therefore:

[tex]\implies g(x)=5|x-4|-2[/tex]