Respuesta :
[tex]\dfrac1{50}\left(\sqrt{\dfrac1{50}}+\sqrt{\dfrac2{50}}+\cdots+\sqrt{\dfrac{50}{50}}\right)=\displaystyle\sum_{n=1}^{50}\sqrt{\dfrac n{50}}\frac1{50}[/tex]
describes a sum of the areas of 50 rectangles, each of width [tex]\dfrac1{50}[/tex], and the [tex]n[/tex]th rectangle has height [tex]\sqrt{\dfrac n{50}}[/tex].
[tex]\sqrt{\dfrac n{50}}[/tex] ranges from a small positive number to 1, which means the integration interval must be [tex][0,1][/tex]. The sum is then the right-endpoint Riemann sum of [tex]\sqrt x[/tex] over the interval with [tex]50[/tex] equally spaced subintervals, so
[tex]\displaystyle\sum_{n=1}^{50}\sqrt{\dfrac n{50}}\frac1{50}\approx\int_0^1\sqrt x\,\mathrm dx[/tex]
The sum itself evaluates to roughly 0.676, while the exact value of the integral is [tex]\dfrac23\approx0.667[/tex].
describes a sum of the areas of 50 rectangles, each of width [tex]\dfrac1{50}[/tex], and the [tex]n[/tex]th rectangle has height [tex]\sqrt{\dfrac n{50}}[/tex].
[tex]\sqrt{\dfrac n{50}}[/tex] ranges from a small positive number to 1, which means the integration interval must be [tex][0,1][/tex]. The sum is then the right-endpoint Riemann sum of [tex]\sqrt x[/tex] over the interval with [tex]50[/tex] equally spaced subintervals, so
[tex]\displaystyle\sum_{n=1}^{50}\sqrt{\dfrac n{50}}\frac1{50}\approx\int_0^1\sqrt x\,\mathrm dx[/tex]
The sum itself evaluates to roughly 0.676, while the exact value of the integral is [tex]\dfrac23\approx0.667[/tex].
The sum bears a value relatively close to that of the integral
[tex]0.676 \approx 0.667[/tex]
Sum approximation
Question Parameters:
[tex]\frac{1}{50} (\sqrt{\frac{1}{50}} +\sqrt{\frac{1}{50}} + \sqrt{\frac{1}{50}} + ... + \sqrt{ \frac{1}{50}}[/tex]
Generally, the equation for the expression is mathematically given as
[tex]\frac{1}{50} (\sqrt{\frac{1}{50}} +\sqrt{\frac{1}{50}} + \sqrt{\frac{1}{50}} + ... + \sqrt{ \frac{1}{50}}[/tex]
This expression above readily shows an expression of 50 rectangles whose individual width is 1/50 and as progression continues you get a height of n/50
Hence, we decipher the integration interval to be [0,1]
Therefore, the sum of right-endpoint Riemann
[tex]\sum_n=1^50 \sqrt{n}{50} \frac{1}{50}=\int^1_0 \sqrt{x} dx[/tex]
Where
[tex]\sum_n=1^50 \sqrt{n}{50} \frac{1}{50} \approx 0.676[/tex]
[tex]\int^1_0 \sqrt{x} dx \approx 0.667[/tex]
Therefore, we can say that the sum bears a value relatively close to that of the integral
[tex]0.676 \approx 0.667[/tex]
For more information on Arithmetic visit
https://brainly.com/question/22568180