Respuesta :

Answer:

[tex]1.76[/tex] days

Step-by-step explanation:

**Note this propably is not what you are looking for but it gets you the final answer.**

Given the eqaution [tex]y=9^{5x}[/tex]

Lets solve for x.

Step 1.

Rewirte the equation as [tex]y=a^{bx}[/tex]. Where [tex]a=9[/tex]  and [tex]b=5[/tex].

Step 2.

Take the natural logarithm of both sides. Then rewrite the left hand side using properties of exponents/logarithms.

[tex]ln(y)=b*x*ln(a)[/tex]

Step 3.

Divide both sides of the equation by [tex]b[/tex]

[tex]\frac{ln(y)}{b} =x*ln(a)[/tex]

Step 4.

Divide both sides of the equation by [tex]ln(a)[/tex]

[tex]\frac{ln(y)}{b*ln(a)} =x[/tex]

Now we have our equation to solve for the number of days.

Step 5.

Plug [tex]9[/tex] back in for [tex]a[/tex]  and [tex]5[/tex] back in for [tex]b[/tex].

[tex]\frac{ln(y)}{5*ln(9)} =x[/tex]

Step 6.

We are given 243 million for [tex]y[/tex].

Lets plug in 243 million.

[tex]\frac{ln(243,000,000)}{5*ln(9)} =x[/tex]

Step 7.

Solve for x.

[tex]x=1.7575419...[/tex]

Lets round to the hundreth's place.

[tex]x=1.76[/tex]

1.76 days