Respuesta :

[tex]\qquad\qquad\huge\underline{{\sf Answer}}[/tex]

Here we go ~

At first, the velocity of sound wave will be :

[tex]\qquad \tt \dashrightarrow \:v = \lambda \cdot f[/tex]

[tex]\qquad \tt \dashrightarrow \:v = 1.76 \times 196[/tex]

Now, the frequency is increased to 784 hertz. but velocity remains same because eave hasn't changed medium

and velocity of wave remains same in a particular medium.

so, we can infer that :

[tex]\qquad \tt \dashrightarrow \: \lambda' = \dfrac{v}{f'} [/tex]

[tex]\qquad \tt \dashrightarrow \: \lambda' = \dfrac{1.76 \times \cancel{196}}{ \cancel{784} \: \: {}^{4} } [/tex]

[tex]\qquad \tt \dashrightarrow \: \lambda' = \dfrac{1.76 }{ {4} } [/tex]

[tex]\qquad \sf  \dashrightarrow \: \lambda' = 0.44 \: m[/tex]

so, the new wavelength will be 0.44 m