If a point P is moving such that the lengths of the tangents drawn from P to the circles
[tex]x^2+y^2-4x-6y-12=0[/tex]
and
[tex]x^2+y^2+6x+18y+26=0[/tex]
are in the ratio 2:3 then find the equation of the locus of P.​

Respuesta :

Hello ~

My name is Irxdscent, and I will be answering your question today! :D

Answer :-

[tex]\sf{(x_{1} \: - y_{1})[/tex]

Explanation :-

  • [tex]\sf{Equations \: of \: the \: circles \: are:}[/tex]

        [tex]\sf{S = x^2 \: + \: y^2 \: - \: 4x \: - \: 6y \: - \: 12 = 0}[/tex]

        [tex]\sf{S_{1} = y^2 \: + \: y^2 \: + \: 6x \: + \: 18y \: + \: 26 = 0}[/tex]

 [tex]\sf{P(x_{1}, \: y_{1}) \: is \: any \: point \: on \: the \: locus \: and \: PT_{1,} \: PT_{2} \: are \: the \: tangents \: from \: P \: to \: the \: two \: circles.[/tex]

  • [tex]\sf{Given \: condition \: is:}[/tex]

  • [tex]\sf{\frac{PT_{1}}{PT_{2}} = \frac{2}{3}[/tex]

  • [tex]\sf{3PT_{1} \: = \: 2PT_{2}[/tex]

  • [tex]\sf{3(x^2 \: + \: y^2 \: - \: 4x \: - \: 6y \: - \: 12) = 2(x^2 \: + \: y^2 \: + \: 6x \: + \: 18y \: + 26)[/tex]

       [tex]\sf{3x^2 \: + \:3 y^2 \: - \: 12x \: - \: 18y \: - \: 36 = 2x^2 \: + \: 2y^2 \: + \: 12x \: + \: 36y \: + 52}[/tex]

       [tex]\sf{x^2 \: + \: y^2 \: - \: 24x \: - \: 54y \: - \: 88 = 0}[/tex]

[tex]\sf{This \: is \: the \: locus \: P \: \sf{(x_{1} \: - y_{1})[/tex]

Hope It Helps! ~

~ Learn With Lrxdscent ~

[tex]\underline{Answer :}[/tex]

ɪ ʀ x ᴅ ꜱ ᴄ ᴇ ɴ ᴛ