Answer:
Explanation:
Formula to calculate the distance between two points [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex] is,
[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
Therefore, length of CD having coordinates C(3,1) and D(3, 3),
[tex]CD=\sqrt{(3-3)^2+(1-3)^2}[/tex]
[tex]=2[/tex] [tex]units[/tex]
Formula to find the midpoint of CD is,
[tex]M=\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}[/tex]
[tex]=(\frac{3+3}{2},\frac{1+3}{2})[/tex]
[tex]=(3,2)[/tex]
Therefore, length of CD = 2 units and (3, 2) are the coordinates of the midpoint of CD.