Respuesta :
[tex]\bf \textit{area of a regular polygon}=\cfrac{1}{2}nR^2\cdot sin\left(\frac{360}{n} \right)
\\ \quad \\ \quad \\
\begin{cases}
n=\textit{number of sides in the polygon}\\
R=\textit{radius of the polygon}
\end{cases}[/tex]
so, sides= n= 6
radius = R = 4
[tex]\bf \textit{area of a regular polygon}=\cfrac{1}{2}nR^2\cdot sin\left(\frac{360}{n} \right) \\ \quad \\ \quad \\ \begin{cases} n=\textit{number of sides in the polygon}\\ R=\textit{radius of the polygon} \end{cases} \\ \quad \\ \quad \\ \cfrac{1}{2}6\cdot 4^2\cdot sin\left(\frac{360}{6} \right)\implies \cfrac{1}{2}\cdot 96\cdot sin\left(60^o \right) \\ \quad \\ 48\cdot sin\left(60^o \right)[/tex]
so, sides= n= 6
radius = R = 4
[tex]\bf \textit{area of a regular polygon}=\cfrac{1}{2}nR^2\cdot sin\left(\frac{360}{n} \right) \\ \quad \\ \quad \\ \begin{cases} n=\textit{number of sides in the polygon}\\ R=\textit{radius of the polygon} \end{cases} \\ \quad \\ \quad \\ \cfrac{1}{2}6\cdot 4^2\cdot sin\left(\frac{360}{6} \right)\implies \cfrac{1}{2}\cdot 96\cdot sin\left(60^o \right) \\ \quad \\ 48\cdot sin\left(60^o \right)[/tex]
we know that
The Area of a Regular Polygon is equal to the formula
[tex] A=\cfrac{1}{2}nr^2\cdot sin\left(\frac{360}{n} \right) [/tex]
where
n is number of sides in the polygon
r is the radius of the polygon
In this problem
the regular polygon is a hexagon with radius of [tex] 4 [/tex] in
So
[tex] n=6\\ r=4 in [/tex]
Substitute the value of n and r in the formula above
[tex] A=\cfrac{1}{2}*6*4^2\cdot sin\left(\frac{360}{6} \right)\\ \\A=\cfrac{96}{2}* sin(60) \\ \\ A=\frac{96}{2} *\frac{\sqrt{3}}{2} \\ \\ A=24\sqrt{3} \\ \\ A=41.57 in^{2} [/tex]
therefore
the answer is the option
[tex] 42 in.2 [/tex]