Respuesta :
Since the point lies on the unit circle, its distance from the origin is 1.
So,
[tex]\sin\theta=\dfrac{\frac{\sqrt7}3}1=\dfrac{\sqrt7}3[/tex]
which means
[tex]\csc\theta=\dfrac1{\sin\theta}=\dfrac3{\sqrt7}[/tex]
So,
[tex]\sin\theta=\dfrac{\frac{\sqrt7}3}1=\dfrac{\sqrt7}3[/tex]
which means
[tex]\csc\theta=\dfrac1{\sin\theta}=\dfrac3{\sqrt7}[/tex]
Answer:
csc (θ) = 3/ sqrt(7)
sin(θ)= sqrt(7)/3
Step-by-step explanation:
The point (x,sqrt7/3) in the second quadrant corresponds to angle θ on the unit circle.
The point (x,y) on the graph represents (cos theta, sin theta)
Given point is [tex](x,\frac{\sqrt{7} }{3} )[/tex]
cos(θ) =x
sin(θ)= sqrt(7)/3
csc (θ) is the inverse of sin(θ)
So csc (θ) = 3/ sqrt(7)