Respuesta :

Answer:

D

Step-by-step explanation:

using Pythagoras' identity in the right triangle.

the square on the hypotenuse is equal to the sum of thesquares on the other two sides, that is

x² + 8² = 9²

x² + 64 = 81 ( subtract 64 from both sides )

x² = 17 ( take square root of both sides )

x = [tex]\sqrt{17}[/tex]

Answer:

  • √17 (Option D)

Step-by-step explanation:

  • This is Right Angled Triangle.

We'll solve this using the Pythagorean Theorem.

Let,

  • x be BC, where BC is the Perpendicular.

  • 8 be AB, where AB is the Base.

  • 9 be AC, where AC is the Hypotenuse.

We know that,

[tex]{ \longrightarrow \pmb{\qquad \: (AB) {}^{2} +( BC) {}^{2} = (AC) {}^{2} }}[/tex]

[tex]{ \longrightarrow \sf \qquad \: (8) {}^{2} +( x) {}^{2} = (9) {}^{2} } [/tex]

[tex]{ \longrightarrow \sf \qquad \: ( x) {}^{2} = (9) {}^{2} - (8) {}^{2}} [/tex]

[tex]{ \longrightarrow \sf \qquad \: ( x) {}^{2} = 81 - 64} [/tex]

[tex]{ \longrightarrow \sf \qquad \: ( x) {}^{2} = 17} [/tex]

[tex]{ \longrightarrow \it \qquad \pmb {x = \sqrt{17 \: \: } } }[/tex]

Therefore,

  • The value of x is √17 .
Ver imagen Аноним