find the value of x in the triangle shown below

Answer:
D
Step-by-step explanation:
using Pythagoras' identity in the right triangle.
the square on the hypotenuse is equal to the sum of thesquares on the other two sides, that is
x² + 8² = 9²
x² + 64 = 81 ( subtract 64 from both sides )
x² = 17 ( take square root of both sides )
x = [tex]\sqrt{17}[/tex]
Answer:
⠀
Step-by-step explanation:
⠀
We'll solve this using the Pythagorean Theorem.
⠀
Let,
⠀
We know that,
[tex]{ \longrightarrow \pmb{\qquad \: (AB) {}^{2} +( BC) {}^{2} = (AC) {}^{2} }}[/tex]
[tex]{ \longrightarrow \sf \qquad \: (8) {}^{2} +( x) {}^{2} = (9) {}^{2} } [/tex]
[tex]{ \longrightarrow \sf \qquad \: ( x) {}^{2} = (9) {}^{2} - (8) {}^{2}} [/tex]
[tex]{ \longrightarrow \sf \qquad \: ( x) {}^{2} = 81 - 64} [/tex]
[tex]{ \longrightarrow \sf \qquad \: ( x) {}^{2} = 17} [/tex]
[tex]{ \longrightarrow \it \qquad \pmb {x = \sqrt{17 \: \: } } }[/tex]
⠀
Therefore,