Answer:
Option C .
Step-by-step explanation:
We would like to solve the below quadratic equation ,
[tex]\longrightarrow f(x) = x^2-12x +32 [/tex]
Step 1 : Equate f(x) with 0 :-
[tex]\longrightarrow f(x) = 0\\[/tex]
[tex]\longrightarrow x^2-12x + 32=0[/tex]
Step 2 : Factorise the RHS :-
[tex]\longrightarrow x^2-8x - 4x +32=0\\[/tex]
[tex]\longrightarrow x(x-8)-4(x-8)=0\\[/tex]
[tex]\longrightarrow (x-8)(x-4)=0\\[/tex]
Step 3 : Equate each factor with 0 :-
[tex]\longrightarrow x - 8 = 0\\ \qquad x -4=0 [/tex]
[tex]\longrightarrow x = 8 \qquad x = 4 [/tex]
[tex]\longrightarrow \underline{\underline{\boldsymbol{ x = 8,4}}}[/tex]
Hence option C is correct .