An angle of measure [tex]\frac{4\pi }{3}[/tex] intersects the unit circle at point ([tex]-1/2,- \frac{\sqrt{3} }{2}[/tex]). What is the exact value of tan([tex]\frac{4\pi }{3}[/tex])?
a. -1/2
b. [tex]\sqrt{3[/tex]
c. [tex]\frac{\sqrt{3} }{3}[/tex]
d. [tex]-\frac{\sqrt{3} }{2}[/tex]

Respuesta :

Answer:

  b.  √3

Step-by-step explanation:

Given a point on the unit circle that represents the position of the terminal ray of an angle, the tangent of that angle is the ratio of the y-coordinate to the x-coordinate.

  tan(4π/3) = y/x = (-√3/2)/(-1/2) = √3/1

  tan(4π/3) = √3

_____

Additional comment

A calculator can confirm this for you.

Ver imagen sqdancefan