Respuesta :

The equation [tex]y = x^2 - 8x + 3[/tex] is an illustration of a quadratic equation

The vertex of the quadratic equation [tex]y = x^2 - 8x + 3[/tex] is (4,-13)

How to determine the vertex?

The equation is given as:-

[tex]y = x^2 - 8x + 3[/tex]

A quadratic equation is represented as:

[tex]y = ax^2 + bx + c[/tex]

By comparison, we have:

a = 1; b = -8; c = 3

The x-coordinate of the vertex is:
[tex]x = -\frac b{2a}[/tex]

So, we have:

[tex]x = \frac 8{2*1}[/tex]

[tex]x = 4[/tex]

Substitute 4 for y in [tex]y = x^2 - 8x + 3[/tex]

[tex]y = 4^2 - 8 * 4 + 3[/tex]

[tex]y = -13[/tex]

When x = 2 and 3, we have:

[tex]y = 2^2 - 8 * 2 + 3 = -9[/tex]

[tex]y = 3^2 - 8 * 3 + 3 = -12[/tex]

When x = 5 and 6, we have:

[tex]y = 5^2 - 8 * 5 + 3 = -12[/tex]

[tex]y = 6^2 - 8 * 6 + 3 = -9[/tex]

So, the table of values is:

x       y

2      -9

3      -12

4      -13

5      -12

6      -9

Read more about quadratic functions at:

https://brainly.com/question/18797214