[tex] \qquad \quad \huge\color{green}\boxed{ \colorbox{black}{\colorbox{white}{Qʋestiσɳ }}}[/tex]

⧠ Topic - Damped oscillations [ grade - 11th ]

◉ A dαmped hαrmonıc oscıllαtor hαs α frequencч of 5 oscıllαtıons per second. The αmplıtude drop to hαlf of ıts vαlue for everч 10 oscıllαtıons, the tıme ıt ɯıll tαke to drop to [tex]\frac{1}{1000}[/tex] of the αngulαr αmplıtude ıs close to ? ☂

⧠ Given choices :

↳ 100 sec

↳ 10 sec

↳ 20 sec

↳ 50 sec

Respuesta :

  • The oscillator has frequency 5Hz

We know

[tex]\\ \rm\rightarrowtail a=a_oe^{-\gamma t}\dots(1)[/tex]

  • a is the amplitude

Now amplitude becomes half after 10oscillations .

[tex]\\ \rm\rightarrowtail a=\dfrac{a_o}{2}[/tex]

  • Frequency=5Hz
  • Oscillations=10
  • Time=10/5=2s

From eq(1)

[tex]\\ \rm\rightarrowtail a=a_o e^{-\gamma t}[/tex]

  • After 2s of time or 10 oscillations

[tex]\\ \rm\rightarrowtail \dfrac{a_o}{2}=a_o e^{-\gamma t}[/tex]

[tex]\\ \rm\rightarrowtail \dfrac{1}{2}=e^{-\gamma t}[/tex]

  • Put t=2

[tex]\\ \rm\rightarrowtail 2^{-1}=e^{-2\gamma}[/tex]

[tex]\\ \rm\rightarrowtail 2=e^{2\gamma}[/tex]

  • Remove e

[tex]\\ \rm\rightarrowtail 2\gamma=ln2[/tex]

[tex]\\ \rm\rightarrowtail \gamma=\dfrac{ln2}{2}\dots(2)[/tex]

Again from eq(1)

[tex]\\ \rm\rightarrowtail a=a_o e^{-\gamma t}[/tex]

[tex]\\ \rm\rightarrowtail \dfrac{a_o}{a}=e^{\gamma t}[/tex]

[tex]\\ \rm\rightarrowtail ln\left(\dfrac{a_o}{a}\right)=\gamma t[/tex]

  • Put [tex]\gamma [/tex] from eq(2)

[tex]\\ \rm\rightarrowtail ln\left(\dfrac{a_o}{a}\right)=\left(\dfrac{ln2}{2}\right)t[/tex]

[tex]\\ \rm\rightarrowtail ln1000=\left(\dfrac{ln2}{2}\right)t[/tex]

[tex]\\ \rm\rightarrowtail t=2\left(\dfrac{ln1000}{ln2}\right)[/tex]

[tex]\\ \rm\rightarrowtail t=2\left(\dfrac{ln10^3}{ln2}\right)[/tex]

[tex]\\ \rm\rightarrowtail t=2\left(\dfrac{3ln10}{ln2}\right)[/tex]

[tex]\\ \rm\rightarrowtail t=2\left(\dfrac{6.9077552789821}{0.6931471805599}\right)[/tex]

[tex]\\ \rm\rightarrowtail t=2(9.9657842846626)[/tex]

[tex]\\ \rm\rightarrowtail t=19.9[/tex]

[tex]\\ \rm\rightarrowtail t\approx 20s[/tex]