Help!!!
Rationalize the denominator of;
[tex]1) \frac{1}{ \sqrt{7} } [/tex]
[tex]2) \frac{2}{ \sqrt{3} - \sqrt{2} } [/tex]
[tex]3) \frac{ \sqrt{6} + \sqrt{3} }{9 + 2 \sqrt{18} } [/tex]

Respuesta :

Answer:

see below for explanation:-

Step-by-step explanation:

#1

[tex] \displaystyle{ \frac{1}{ \sqrt{7} } }[/tex]

[tex]\displaystyle{ \frac{1}{ \sqrt{7} } \times \frac{ \sqrt{7} }{ \sqrt{7} } }[/tex]

[tex]\displaystyle{ \frac{ \sqrt{7} }{7} }[/tex]

#2

[tex]\displaystyle{ \frac{2}{ \sqrt{3} - \sqrt{2} } }[/tex]

[tex]\displaystyle{ \frac{2}{ \sqrt{3} - \sqrt{2} } \times \frac{ \sqrt{3} + \sqrt{2} }{ \sqrt{3} + \sqrt{2} } }[/tex]

[tex]\displaystyle{ \frac{2( \sqrt{3} + \sqrt{2} }{( \sqrt{3} {)}^{2} - ( \sqrt{ 2 } {)}^{2} } }[/tex]

[tex]\displaystyle{ \frac{2( \sqrt{3} + \sqrt{2} ) }{3 - 2} }[/tex]

[tex]\displaystyle{2( \sqrt{3} + \sqrt{2} )}[/tex]

#3

[tex]\displaystyle{ \frac{ \sqrt{6} + \sqrt{3} }{9 + 2 \sqrt{18} } }[/tex]

[tex]\displaystyle{ \frac{ \sqrt{6} + \sqrt{3} }{ 9 + 2 \sqrt{9 \times 2} } }[/tex]

[tex]\displaystyle{ \frac{ \sqrt{6} + \sqrt{3} }{9 + 6 \sqrt{2} } }[/tex]

[tex]\displaystyle{ \frac{ \sqrt{6} + \sqrt{3} }{3(3 + 2 \sqrt{2}) } }[/tex]

[tex]\displaystyle{ \frac{ \sqrt{6} + \sqrt{3} }{3(3 + 2 \sqrt{2}) } \times \frac{3 - 2 \sqrt{2} }{3 - 2 \sqrt{2} } }[/tex]

[tex]\displaystyle{ \frac{3 \sqrt{6} - 2 \sqrt{12} + 3 \sqrt{3} - 2 \sqrt{6} }{3( {3}^{2} - (2 \sqrt{2} {)}^{2} ) } }[/tex]

[tex]\displaystyle{ \frac{ \sqrt{6} - 4 \sqrt{3} + 3 \sqrt{3} }{3(9 - 8)} }[/tex]

[tex]\displaystyle{ \frac{ \sqrt{6} - \sqrt{3} }{3} }[/tex]