If

[tex]\\ \rm\Rrightarrow 4^x-4^{x-1}=24,[/tex]

then (2x)^x equals

(a) 5√5

(b) √5

Note:-

Make sure you include all steps.

Proper explanation is mandatory .


Spams/irrelevant/wrong/copied answers will be deleted on the spot so don't waste your precious time here by spamming .

Instead provide good explanation and correct answer

Respuesta :

[tex]\\ \sf\Rrightarrow 4^x-4^{x-1}=24[/tex]

[tex]\\ \sf\Rrightarrow 4^x-4^x4^{-1}=24[/tex]

[tex]\\ \sf\Rrightarrow 4^x(1-0.25)=24[/tex]

[tex]\\ \sf\Rrightarrow 4^x(0.75)=24[/tex]

[tex]\\ \sf\Rrightarrow 4^x=32[/tex]

[tex]\\ \sf\Rrightarrow 2^{2x}=2^5[/tex]

[tex]\\ \sf\Rrightarrow 2x=5[/tex]

[tex]\\ \sf\Rrightarrow (2x)^x=(5)^x[/tex]

Answer:

Step-by-step explanation:

Let [tex]4^{x}=y[/tex], then we obtain that:

[tex]4^{x}-4^{x-1}=24\rightarrow y-(y/4)=24 \rightarrow \frac{3y}{4}=24[/tex]

So, we can get: [tex]3y=96 \rightarrow y = 96/3 = 32[/tex]

Now, because [tex]y=4^{x}=32[/tex], we can obtain the value of x as follows:

[tex]4^{x}=(2^{2})^{x}=(2^{5}) \rightarrow 2x = 5 \rightarrow x=5/2[/tex]

Then [tex](2x)^{x}=(2(5/2))^{5/2}=5^{5/2}=\sqrt{5^{5}}=25\sqrt 5[/tex]

There is no answer in your question.