Respuesta :

Answer:

sinΘ = [tex]\frac{2}{3}[/tex]

Step-by-step explanation:

using the identity

sin²x + cos²x = 1  ( subtract cos²x from both sides )

sin²x = 1 - cos²x ( take square root of both sides )

sinx = ± [tex]\sqrt{1-cos^2x}[/tex]

given

cosΘ = - [tex]\frac{\sqrt{5} }{3}[/tex] , then

sinΘ = ± [tex]\sqrt{1-(-\frac{\sqrt{5} }{3})^2 }[/tex]

        = ± [tex]\sqrt{1-\frac{5}{9} }[/tex]

        = ± [tex]\sqrt{\frac{4}{9} }[/tex]

        = ± [tex]\frac{2}{3}[/tex]

since Θ is in quadrant II where sinΘ > 0 , then

sinΘ = [tex]\frac{2}{3}[/tex]