Respuesta :

Answer:

[tex]A_{Circle} \approx 39.24\: units^2[/tex]

Step-by-step explanation:

Square ABCD is inscribed in a circle with center P such that BC = 5 units.

BD will be diagonal of the square as well as diameter of the circle.

[tex]BD = BC\times\sqrt 2[/tex]

[tex]\implies BD = 5\sqrt 2[/tex]

-> Diameter of the circle [tex](d) = 5\sqrt 2[/tex]

-> Radius of the circle [tex](r) = 2.5\sqrt 2=3.535\: units[/tex]

[tex]A_{Circle} =\pi(r)^2[/tex]

[tex]\implies A_{Circle} =3.14(3.535)^2[/tex]

[tex]\implies A_{Circle} =3.14(3.535)^2[/tex]

[tex]\implies A_{Circle} =39.2381465[/tex]

[tex]\implies A_{Circle} \approx 39.24\: units^2[/tex]