Respuesta :

The radius of the incircle of the triangle with sides 25 cm, 51 cm, and 52

cm is 26 cm.

How can the radius of the incircle of a triangle be found?

The area of the triangle is given as follows;

A = √(s·(s - a)·(s - b)·(s - c))

Where;

a = 25 cm

b = 51 cm

c = 52 cm

s = The semi perimeter of the triangle = (25 + 51 + 52) ÷ 2 = 64

A = √(64·(64 - 25)·(64 - 51)·(64 - 52)) = 624

The area of the triangle is the area of ΔABC + ΔAOC + ΔBOC + ΔAOB

Which gives;

[tex]A = \mathbf{\dfrac{a \cdot r}{2} + \dfrac{b \cdot r}{2} + \dfrac{c \cdot r}{2}}[/tex]

Therefore;

[tex]A = r \cdot \left(\dfrac{a + b + c }{2} \right) = \mathbf{r \cdot s}[/tex]

[tex]r = \dfrac{A}{s}[/tex]

Therefore;

[tex]r = \dfrac{624}{64} = 26[/tex]

The radius of the incircle of the triangle is 26 cm

Learn more about the incircle of a triangle here:

https://brainly.com/question/6558867

Ver imagen oeerivona