Respuesta :

[tex]▪▪▪▪▪▪▪▪▪▪▪▪▪  {\huge\mathfrak{Answer}}▪▪▪▪▪▪▪▪▪▪▪▪▪▪[/tex]

Here's the solution ~

Area of a Trapezoid is :

[tex]\qquad \sf  \dashrightarrow \: \dfrac{1}{2} \times (sum \: of \: parallel \: sides) \times height = 133 \: c {m}^{2} [/tex]

so ~

[tex]\qquad \sf  \dashrightarrow \: \dfrac{1}{2} \times ((x + 5) + (3x - 2)) \times (2x - 3) = 133 \: [/tex]

[tex]\qquad \sf  \dashrightarrow \: \dfrac{1}{2} \times (x + 5+ 3x - 2) \times (2x - 3) = 133 \: [/tex]

[tex]\qquad \sf  \dashrightarrow \: \dfrac{1}{2} \times (4x + 3) \times (2x - 3) = 133 \: [/tex]

[tex]\qquad \sf  \dashrightarrow \: \dfrac{1}{2} \times(8 {x}^{2} - 12x + 6x - 9) = 133 \: [/tex]

[tex]\qquad \sf  \dashrightarrow \: \dfrac{1}{2} \times(8 {x}^{2} - 6x - 9) = 133 \: [/tex]

[tex]\qquad \sf  \dashrightarrow \: (8 {x}^{2} - 6x - 9) =( 133 \times 2)\: [/tex]

[tex]\qquad \sf  \dashrightarrow \: 8 {x}^{2} - 6x - 9 =266\: [/tex]

[tex]\qquad \sf  \dashrightarrow \: 8 {x}^{2} - 6x - 9 - 266 = 0[/tex]

[tex]\qquad \sf  \dashrightarrow \: 8 {x}^{2} - 6x - 275 = 0[/tex]

hence, we got the required equation ~

[tex]\\ \rm\hookrightarrow \dfrac{1}{2}(Sum\:of\: parallel\:sides)(Height)=133[/tex]

[tex]\\ \rm\hookrightarrow \dfrac{1}{2}(x+5+3x-2)(2x-3)=133[/tex]

[tex]\\ \rm\hookrightarrow 4x+3(2x-3)=266[/tex]

[tex]\\ \rm\hookrightarrow 4x(2x-3)+3(2x-3)=266[/tex]

[tex]\\ \rm\hookrightarrow 8x^2-12x+6x-9=266[/tex]

[tex]\\ \rm\hookrightarrow 8x^2-6x=266+9[/tex]

[tex]\\ \rm\hookrightarrow 8x^2-6x=275[/tex]

[tex]\\ \rm\hookrightarrow 8x^2-6x-275=0[/tex]