#14 write a linear equation in slope intercept form that passes through the points (-11,-5) and (1,2) find m then plug into point slope formula distribute then solve for y

14 write a linear equation in slope intercept form that passes through the points 115 and 12 find m then plug into point slope formula distribute then solve for class=

Respuesta :

Answer:

  •   [tex]y =[/tex] [tex]\frac{x}{4}[/tex] + [tex]\frac{7}{4}[/tex]

Step-by-step explanation:

slope formula: [tex]\frac{y2-y1}{x2-x1}[/tex]

                       : [tex]\frac{-2--5}{1--11}[/tex]

                       : [tex]\frac{1}{4}[/tex] ............this is our slope, m.

using y - y1 = m ( x - x1 )

⇒     y - 2 = [tex]\frac{1}{4}[/tex] ( x - 1 )

⇒      [tex]y =[/tex] [tex]\frac{x}{4}[/tex] + [tex]\frac{7}{4}[/tex]

Answer:

[tex]y=\frac{1}{4}x - \frac{9}{4}[/tex]

Step-by-step explanation:

[tex]m= \frac{y2-y1}{x2-x1}[/tex]

So, plug in (-11,-5) and (1,-2),

[tex]m=\frac{(-2) - (-5)}{1-(-11)}[/tex]

Subtract,

[tex]m=\frac{3}{12}[/tex]

Divide 3 by 12:

[tex]m=\frac{3}{12} = .25[/tex] or [tex]\frac{1}{4}[/tex]

The slope is .25 or [tex]\frac{1}{4}[/tex]

So, the equation so far is:

[tex]y=\frac{1}{4} x + b[/tex]

Now, we have to find the y-intercept.

[tex]y=\frac{1}{4}x+b[/tex]

Substitute the x for 1 and -2 in place of y.

[tex]-2=\frac{1}{4}(1) +b[/tex]

Now solve.

[tex]-2=\frac{1}{4}(1) +b\\-2=\frac{1}{4} +b\\-\frac{1}{4} -\frac{1}{4} \\\\-2\frac{1}{4} =b[/tex]

the y-intercept is: [tex]-2\frac{1}{4}[/tex] or [tex]-\frac{9}{4}[/tex]

The full equation is : [tex]y=\frac{1}{4}x - \frac{9}{4}[/tex]

Hope this helps! Brainliest would be much appreciated! Have a great day! :)