[tex] \huge{ \fbox \color{cyan}{Answer}}[/tex]
[tex] \tt \implies \: P \: \rightarrow \: 0.71 \\ \\ \\ \tt \: \: \: { \underline { \green{Solution}}} : [/tex]
[tex]\tt \bf \: \: Given : \: \: Grade \: \: \: \: \: \: \: frequency[/tex]
[tex]\therefore \tt Total \: \: number \: \: of \: \: students \: \: are \: \: 35 [/tex]
[tex]\tt \bf \underline{ATQ} : A \: \: student \: \: earn \: \: a \: \: Grade \: \: of \: \: B \: or \: C \: [/tex]
[tex]\tt \rightarrow \: Grade \: B \: + \: Grade \: C \: \: = 10 + 15 = 25[/tex]
[tex]\sf \: \text{\blue{ Apply formula}} : [/tex]
[tex]\tt \: \circ \: Probability =( \frac{number \: of \: favourable \: outcome}{total \: number \: of \: outcomes} )[/tex]
[tex]\tt \: \rightarrow \: p(grade \: \: b \: \: or \: \: c) = \cancel \frac{25}{35} = \cancel \frac{5}{7} = 0.714 [/tex]
[tex] \tt \: round \: to \: nearest \: \: hunderath[/tex]
[tex]\tt \bf \implies \: \fbox{ \pink{0.71}}[/tex]