Respuesta :

Answer: n / 7
an = n / 7
a10 = 10 / 7
(if it wants you to simplify it, 10/7 would become 1 and 3/7)

Answer:

[tex]a_n=\frac{3}{7} +\frac{1}{7}n[/tex]

[tex]a_{10}=1\frac{6}{7}[/tex]

Step-by-step explanation:

Notice the pattern, everytime you add 1/7 to the previous answer

According to the term formula, [tex]a_{n}=a_1+(n-1)d[/tex]

[tex]a_n=[/tex] nth term

[tex]a_1=[/tex] First term

d = common difference

To find [tex]a_n[/tex], we have to substitute terms.

We would get: [tex]a_n=\frac{4}{7}+(n-1)\frac{1}{7}=\frac{4}{7}+\frac{1}{7} n-\frac{1}{7}=\frac{3}{7} +\frac{1}{7}n[/tex]

Using [tex]a_n=\frac{3}{7} +\frac{1}{7}n[/tex] and given that n = 10, we can find the answer

[tex]a_{10}=\frac{3}{7} +\frac{10}{7}=\frac{13}{7}=1\frac{6}{7}[/tex]

Hope this helps :)

Have a great day!