The area of a rectangle is 5 x cubed 19 x squared 6 x minus 18 with length x 3. Using synthetic division, what is the width of the rectangle?.

Respuesta :

The width of the rectangle is [tex]\rm 5 (19x^2+6x-18)[/tex].

Given

The area of a rectangle is;

[tex]\rm Area = 5x^3(19x^2+6x-18)[/tex]

And the length is [tex]\rm x^3[/tex].

How to calculate the area of the rectangle?

The area of the rectangle is given by;

[tex]\rm Area = length \times width[/tex]

Substitute all the values in the formula;

[tex]\rm Area = length \times width\\\\5x^3(19x^2+6x-18) = x^3 \times width\\\\Width = \dfrac{5x^3}{x^3} (19x^2+6x-18) \\\\Width = 5 (19x^2+6x-18)[/tex]

Hence, the width of the rectangle is [tex]\rm 5 (19x^2+6x-18)[/tex].

To know more about the Area of the Rectangle click the link given below.

https://brainly.com/question/13164931