Respuesta :

#b

  • x+4y=-26--(1)
  • x-4y=8--(2)

Solve graphically

  • Solution is(-9,-4.25)

#c

  • x+y=2--(1)
  • -3x-y=5--(2)

  • Solution is(-3.5,5.5)

Both graphs attached

Ver imagen Аноним
Ver imagen Аноним

Answer:

Question b

[tex]\textsf{Equation 1:} \ \dfrac12x-2y=-13[/tex]

[tex]\textsf{Equation 2:} \ x-4y=8[/tex]

Multiply Equation 2 by two:

[tex]\implies \textsf{Equation 3:} \ x+4y=-26[/tex]

Subtract Equation 2 from Equation 3:

[tex]\begin{aligned}x-4y & =8\\- \ \ \ x+4y & =-26\\\cline{1-2}-8y & =34\end{aligned}[/tex]

Solve for y:

[tex]\implies -8y=34[/tex]

[tex]\implies y = -\dfrac{17}{4}[/tex]

Substitute found value of y into Equation 2 and solve for x:

[tex]\implies x-4\left(-\dfrac{17}{4}\right)=8[/tex]

[tex]\implies x+17=8[/tex]

[tex]\implies x=-9[/tex]

Question a

[tex]\textsf{Equation 1:} \ x+y=2[/tex]

[tex]\textsf{Equation 2:} \ -3x-y=5[/tex]

Add Equation 1 and Equation 2:

[tex]\begin{aligned}x+y & = 2\\+ \ \ \ -3x-y & =5\\\cline{1-2}-2x & = 7\end{aligned}[/tex]

Solve for x:

[tex]\implies -2x=7[/tex]

[tex]\implies x = -\dfrac{7}{2}[/tex]

Substitute found value of x into Equation 1 and solve for y:

[tex]\implies \left(-\dfrac{7}{2}\right)+y=2[/tex]

[tex]\implies y=\dfrac{11}{2}[/tex]