Respuesta :

We know that

[tex]\displaystyle \int_1^4 f(x) \, dx = 8[/tex]

[tex]\displaystyle \int_1^{10} f(x) \, dx = 17[/tex]

By linearity of the definite integral,

[tex]\displaystyle \int_4^{10} 2f(x) - 3 \, dx = 2 \int_4^{10} f(x) \, dx - 3 \int_4^{10} dx[/tex]

Presumably, you're aware that

[tex]\displaystyle \int_a^b dx = b - a[/tex]

for any two numbers a and b, so the last integral is simply 6.

From the known integrals, we also know

[tex]\displaystyle \int_1^{10} f(x) \, dx = \int_1^4 f(x) \, dx + \int_4^{10} f(x) \, dx[/tex]

[tex]\displaystyle 17 = 8 + \int_4^{10} f(x) \, dx[/tex]

[tex]\displaystyle \int_4^{10} f(x) \, dx = 9[/tex]

so

[tex]\displaystyle \int_4^{10} 2f(x) - 3 \, dx = 2\times9- 3\times6 = \boxed{0}[/tex]