Respuesta :

sp3657

Answer:

STEP

1

:

Equation at the end of step 1

 (4x•((xy+(2•(y2)))-3y))-((2•(y2))•((2x2+4xy)+2x))

STEP

2

:

Equation at the end of step

2

:

 (4x•((xy+(2•(y2)))-3y))-(2y2•(2x2+4xy+2x))

STEP

3

:

STEP

4

:

Pulling out like terms

4.1     Pull out like factors :

  2x2 + 4xy + 2x  =   2x • (x + 2y + 1)

Multiplying exponents:

4.2    21  multiplied by  21   = 2(1 + 1) = 22

Equation at the end of step

4

:

 (4x•((xy+(2•(y2)))-3y))-22xy2•(x+2y+1)

STEP

5

:

Equation at the end of step

5

:

 (4x•((xy+2y2)-3y))-22xy2•(x+2y+1)

STEP

6

:

STEP

7

:

Pulling out like terms

7.1     Pull out like factors :

  xy + 2y2 - 3y  =   y • (x + 2y - 3)

Equation at the end of step

7

:

 4xy • (x + 2y - 3) -  22xy2 • (x + 2y + 1)

STEP 8:

Pulling out like terms

9.1     Pull out like factors :

  -4x2y2 + 4x2y - 8xy3 + 4xy2 - 12xy  =

 -4xy • (xy - x + 2y2 - y + 3)

Final result :

 -4xy • (xy - x + 2y2 - y + 3)

Step-by-step explanation: