2x+2/x^2+x+3x+3/x^2+x

Answer:
5/x
Step-by-step explanation:
[tex]\frac{2x+2}{x^2+x}+\frac{3x+3}{x^2+x}[/tex]
[tex]\frac{2x+2+3x+3}{x^2+x}[/tex]
[tex]\frac{5x+5}{x^2+x}[/tex]
[tex]\frac{5(x+1)}{x(x+1)}[/tex]
[tex]\frac{5}{x}[/tex]
Answer:
[tex] \frac{2x + 2}{ {x}^{2} + x } + \frac{3x + 3}{ {x}^{2} + x} \\ \\ = \frac{2(x + 1)}{x {}^{2} + x } + \frac{3x + 3}{ {x}^{2} + x } \\ \\ = \frac{2(x + 1)}{x(x + 1)} + \frac{3x + 3}{ {x}^{2} + x} \\ = \frac{2}{x} + \frac{3(x + 1)}{ {x}^{2} + x} \\ \\ = \frac{2}{3} + \frac{3(x + 1)}{ {x}^{2} + x} \\ \\ = \frac{2}{3} + \frac{3(x + 1)}{x (x + 1) } \\ \\ = \frac{2}{x} + \frac{3}{x} \\ \\ = \frac{2 + 3}{x} \\ \\ = \frac{5}{x} [/tex]
# keep learning#
# Bora 7#