Respuesta :

We should confirm that f(x) has an inverse in the first place. If it does, then

[tex]f\left(f^{-1}(x)\right) = x[/tex]

Given that f(x) = x/(2 - x), we have

[tex]f\left(f^{-1}(x)\right) = \dfrac{f^{-1}(x)}{2 - f^{-1}(x)} = x[/tex]

Solve for the inverse:

[tex]\dfrac{f^{-1}(x)}{2 - f^{-1}(x)} = x[/tex]

[tex]f^{-1}(x) = 2x - x f^{-1}(x)[/tex]

[tex]f^{-1}(x) + x f^{-1}(x) = 2x[/tex]

[tex]f^{-1}(x) (1 + x) = 2x[/tex]

[tex]f^{-1}(x) = \dfrac{2x}{1+x}[/tex]

Then

[tex]f^{-1}(-2) = \dfrac{2(-2)}{1-2} = \boxed{4}[/tex]

Note that this is the same as solve for x when f(x) = -2 :

x/(2 - x) = -2   ⇒   x = 4