The solution to the logarithmic equation [tex]\mathbf{log_2(x-6) = 4}[/tex] is x =24
The logarithmic equation is given as:
[tex]\mathbf{log_2(x-6) = 4}[/tex]
Apply exponential law of logarithm
[tex]\mathbf{(x-6) = 2^4}[/tex]
Remove the brackets
[tex]\mathbf{x-6 = 2^4}[/tex]
Add 6 to both sides
[tex]\mathbf{x-6 +6= 6+ 2^4}[/tex]
Express 2^4 as 16
[tex]\mathbf{x-6 +6= 6+ 16}[/tex]
Add -6 and 6
[tex]\mathbf{x= 6+ 16}[/tex]
Add 6 and 16
[tex]\mathbf{x= 24}[/tex]
Hence, the solution to the logarithmic equation [tex]\mathbf{log_2(x-6) = 4}[/tex] is x =24
Read more about logarithmic equation at:
https://brainly.com/question/3181916