Respuesta :

The solution to the logarithmic equation [tex]\mathbf{log_2(x-6) = 4}[/tex] is x =24

The logarithmic equation is given as:

[tex]\mathbf{log_2(x-6) = 4}[/tex]

Apply exponential law of logarithm

[tex]\mathbf{(x-6) = 2^4}[/tex]

Remove the brackets

[tex]\mathbf{x-6 = 2^4}[/tex]

Add 6 to both sides

[tex]\mathbf{x-6 +6= 6+ 2^4}[/tex]

Express 2^4 as 16

[tex]\mathbf{x-6 +6= 6+ 16}[/tex]

Add -6 and 6

[tex]\mathbf{x= 6+ 16}[/tex]

Add 6 and 16

[tex]\mathbf{x= 24}[/tex]

Hence, the solution to the logarithmic equation [tex]\mathbf{log_2(x-6) = 4}[/tex] is x =24

Read more about logarithmic equation at:

https://brainly.com/question/3181916