The predicted concentration of IO₃⁻ needed to start the precipitation titration is 1.703 × 10⁻⁷ M
The dissociation of zinc (II) iodate can be expressed as:
[tex]\mathbf{Zn (IO_3)_2 \to Zn^{2+} + 2IO_3^-}[/tex]
Given that the solubility product constant Ksp value = 3.9 × 10⁻⁶
For the above dissociation,
[tex]\mathbf{Ksp = [Zn^{2+ }] [IO_3^-]^2}[/tex]
Since [tex]\mathbf{ [Zn^{2+ }] = [Zn(NO_3)_2] = 0.229 \ M}[/tex]
∴
[tex]\mathbf{3.9\times 10^{-8} =(0.229) \times [IO_3^-]^2}[/tex]
[tex]\mathbf{ [IO_3^-]^2 = \dfrac{3.9\times 10^{-8} }{(0.229)}}[/tex]
[tex]\mathbf{ [IO_3^-]^2 = 1.703 \times 10^{-7} \ M}[/tex]
Therefore, we can conclude that the initial predicted concentration of IO₃⁻ needed to start the precipitation titration is 1.703 × 10⁻⁷ M
Learn more about solubility product constant here:
https://brainly.com/question/17274813?referrer=searchResults