The length of a planet's orbit around a star is approximately 22,200,000 km. It takes the planet about 1230 Earth days to complete a full orbit. What is the planet's average speed in kmh-1 to 3sf?​

Respuesta :

Answer:

Approximately [tex]12.9\; \rm km \cdot h^{-1}[/tex], assuming that this orbit is circular.

Step-by-step explanation:

The question is asking for a tangential velocity with the unit [tex]\rm km \cdot h^{-1}[/tex]. The unit of the given distance is already in [tex]\rm km[/tex] as required. Convert the unit of the orbital period to hours:

[tex]\begin{aligned}T &= 1230\; \text{day} \times \frac{24\; \rm h}{1\; \text{day}}. = 29520\; \rm h\end{aligned}[/tex].

Calculate the angular velocity [tex]\omega[/tex] of this planet from its orbital period:

[tex]\begin{aligned}\omega &= \frac{2\, \pi}{T} \\ &= \frac{2\, \pi}{29520\; \rm h} \approx 2.1285 \times 10^{-4}\; \rm h^{-1}\end{aligned}[/tex].

Given the radius [tex]r[/tex] of the orbit of this planet, the tangential velocity [tex]v_{\perp}[/tex] of this planet would be:

[tex]\begin{aligned}v_{\perp} &= \omega\, r \\ &\approx 2.1285 \times 10^{-4}\; \rm h^{-1} \times 2.22\times 10^{7}\; \rm km \\ &\approx 4.73 \times 10^{3}\; \rm km \cdot h^{-1}\end{aligned}[/tex].

If the orbit of this planet is circular, the velocity of the planet would be equal to its tangential velocity: [tex]4.73\times 10^{3}\; \rm km \cdot h^{-1}[/tex].