Human population numbers are in constant flux. Suppose a country has a population of 20 million people at the start of one year and during the year there are 600,000 births, 350,000 deaths, 100,000 immigrants, and 5,000 emigrants. You and your classmates will determine the total population at the end of the year and then model expected change over a longer period.

Respuesta :

  • Birth=+600000
  • Death=-350000
  • Immigrants=+100000
  • emigrants=-5000

. Population Change:-

[tex]\\ \sf\longmapsto 600000-350000+100000-5000=+350000[/tex]

Population:-

[tex]\\ \sf\longmapsto 2000000+350000=2350000[/tex]

According to the question given,

[tex]\sf\longmapsto \: emigrants=-5000[/tex]

[tex]\sf\longmapsto \: Immigrants = 100000[/tex]

[tex]\sf\longmapsto \: Death -350000[/tex]

[tex] \sf \longmapsto \: Birth=600000[/tex]

Now let's solve out and get the result!

The change of population:

[tex] \sf \longmapsto600000-350000 + 100000 - 5000=350000[/tex]

The total population at the end of the year:

[tex]\sf\longmapsto \:2000000 + 350000 [/tex]

[tex]\sf\dashrightarrow2350000[/tex]

  • Hence the total population at the end of the year is 2350000.